Safety is vitally important when using electronic devices in hazardous areas. Intrinsic safety (IS) ensures harmless operation in areas where an electric spark could ignite flammable gas or dust. Hazardous areas include oil refineries, chemical plants, grain elevators and textile mills. All electronic devices entering a hazardous. . Zone 0 Gas/vapors exist continuously or for long periods under normal use. Zone 1 Gas/vapors likely to exist under normal use. Zone 2 Gas/vapors unlikely to exist under normal use. Zone 20 Dust exists continuously or for long. [pdf]
Not all cells have built-in protections and the responsibility for safety in its absence falls to the Battery Management System (BMS). Further layers of safeguards can include solid-state switches in a circuit that is attached to the battery pack to measure current and voltage and disconnect the circuit if the values are too high.
The battery protection circuit disconnects the battery from the load when a critical condition is observed, such as short circuit, undercharge, overcharge or overheating. Additionally, the battery protection circuit manages current rushing into and out of the battery, such as during pre-charge or hotswap turn on.
The selected protection device must trip in case of a fault in less than 100 ms. In case the fault current provided by the battery does not allow for the finding of protection devices, such as a Circuit Breaker or fuse, that meets the derating criteria stated in point B, it is hence possible to increase the multiplier up to 0.7.
Further layers of safeguards can include solid-state switches in a circuit that is attached to the battery pack to measure current and voltage and disconnect the circuit if the values are too high. Protection circuits for Li-ion packs are mandatory. (See BU-304b: Making Lithium-ion Safe)
A protection device must be sized properly so that the energy flowing from the batteries during the failure will not cause damage to the batteries or other components along the short circuit path. The protection must clear the fault in less than 100 milliseconds. The impedance of the line is mainly resistance and inductance.
Need to consider the case also of parallel battery strings and the case when one battery string is damaged or not available. The nominal current of the remaining battery strings in the parallel system will increase and the protection system must not trip due to this.
Let’s start with temperature protection, although it seldom occurs that the battery gets too hot. In this case, it would need to cool back down before it comes back on. Lithium batteries can get hot for multiple reasons. The most common reasons are too high current either while discharging or charging for the ambient. . Next is current protection. This occurs when there is too much load or a short circuit condition. Our batteries will protect itself from a short circuit as well as too large of a load that can. . Lastly is voltage protection - the battery is both protected from high and low voltage. High voltage is easy! Simply remove the source of charge and the voltage will fall back into specifications. [pdf]
Connect with Darren on LinkedIn. The BMS causes lithium batteries to go in to protection mode when overheating, high currents, and high or low voltage. Learn more on how to prevent those and recharge your battery
The lithium battery protection board is a core component of the intelligent management system for lithium-ion batteries. Its main functions include overcharge protection, over-discharge protection, over-temperature protection, over-current protection, etc., to ensure the safe use of the battery and extend its service life.
Lithium batteries have the advantage of high energy density. However, they require careful handling. This article discusses important safety and protection considerations when using a lithium battery, introduces some common battery protection ICs, and briefly outlines selection of important components in battery protection circuits. Overcharge
Lithium battery overcharge protection allows the battery to shut off and the current goes away. The battery will cool down but if it goes back into protection mode after the battery turns back on you may have to reduce your load, reduce the charge rate, or improve the ventilation around the batteries. Next is current protection.
Because of the BMS, if any of the values get outside the safe specification of the battery, the battery will go into protection mode and shut the battery off, thus ensuring your safety. This may be new to most people since standard lead-acid batteries do not have a built-in battery management systems.
Lastly is voltage protection - the battery is both protected from high and low voltage. High voltage is easy! Simply remove the source of charge and the voltage will fall back into specifications and come back on. Low voltage, on the other hand, can be a little tricky sometimes.
We are deeply committed to excellence in all our endeavors.
Since we maintain control over our products, our customers can be assured of nothing but the best quality at all times.