

What is a photosensitizer/dye?

The photosensitizer/dye is a critical component of ss-DSSCs and plays a vital role in the device's overall performance. In this review, we summarize recent developments and performance of photosensitizers, including mono- and co-sensitization of ruthenium, porphyrin, and metal-free organic dyes under 1 sun and ambient/artificial light conditions.

What are the different types of photovoltaic sensitizers?

Recent advances in different types of photosensitizers such as ruthenium, porphyrin, and organic sensitizers are reviewed. The design strategies to develop highly efficient sensitizers and their photovoltaic performance with co-sensitization under 1-sun and artificial light conditions are discussed.

What is a dye-sensitized solar cell?

In this present research, a low-cost and ecofriendly dye-sensitized solar cell (DSSC) is being developed using a graphite-based nanocomposite and an unusual plant extract (*Garcinia mangostana* L.) as the dye photosensitizer.

How did Grätzel et al develop a photosensitizer Dye 2?

Grätzel et al. developed a photosensitizer dye 2 through double protonation of dye 1 and studied its optical, electrochemical, and photovoltaic properties.

Are dye-sensitized solar cells a viable alternative to conventional photovoltaic systems?

Dye-sensitized solar cells (DSSCs) offer a promising, cost-effective alternative to conventional photovoltaic systems. Organic sensitizers, capable of capturing a broad spectrum of sunlight, are key components in DSSCs, but their development and testing are often time-consuming and expensive.

Why are molecule photosensitizers important?

Molecular photosensitizers play a key role in many areas of renewable-energy chemistry and technology, including dye-sensitized solar cells and photocatalysis reactions that generate small-molecule fuels.

Christian et al.'s study [1] examined the application of dyes from mulberries, chaste trees, and cabbage palm fruits in DSSCs and assessed the effectiveness of the cell. The operational characteristics of the DSSCs were similar to those using synthetic dyes. Giuseppe and Gaetano [2] explored DSSCs using dyes extracted from *Citrus sinensis* and eggplant peels ...

This research focuses on the first demonstration of NO₂ Lw (2-hydroxy-3-nitronaphthalene-1,4-dione) as a photosensitizer and TiO₂, ZnO, and Nb₂O₅ as photoanode materials for dye-sensitized solar cells (DSSCs). The metal-free organic photosensitizer (i.e., nitro-group-substituted naphthoquinone, NO₂ Lw) was

synthesized for this purpose. As a ...

The main characters of PDT are the photosensitizer (PS), light with an appropriate energy to penetrate the tissue window [8, 9], ... luminescence solar concentrator [18], dye-sensitized solar cells ... Since the molecular design is an essential step in the development of new pharmaceutical products, given the large number of possibilities to ...

Rational design and performance prediction of organic photosensitizer based on TATA+ dye for hydrogen production by photocatalytic decomposition of water ... properties and a robust solar energy ...

The design strategies to develop highly efficient sensitizers and their photovoltaic performance with co-sensitization under 1-sun and artificial light conditions are discussed. ... A photosensitizer used for normal solar cells should have broad and extensive absorption spectra because the irradiance spectrum of sunlight has cover from high ...

A molecular photosensitizer achieves a V_{oc} of 1.24 V enabling highly efficient and stable dye-sensitized solar cells with copper(II/I)-based electrolyte. Nat Commun 12, 1777 (2021). <https://doi.org/10.1038/s41467-021-23420-7>

photosensitizer design principles for early transition metals The high abundance of early transition metals makes them ideal candidates for novel photosensitizer development. However, the fundamentally different electronic structures of ...

In the design of a photosensitizer for DSC, most modifications involve the appropriate choice of an ancillary ligand for achieving better light harvesting. The proportional ...

By proper design, BODIPY dyes have been turned from highly fluorescent labels into efficient triplet photosensitizers with strong absorption in the visible region (from green to orange). In this ...

A photosensitizer is a natural or synthetic molecule capable of effecting a chemical change in another molecule through a photochemical process. Chlorophyll and quantum dots are common examples of ...

Porphyrin sensitizers with donor structural engineering for superior performance dye-sensitized solar cells and tandem solar cells for water splitting applications

Web: <https://www.agro-heger.eu>